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Selective anion-induced organization of phenylboronic acids

and alizarin results in a new TURN-ON fluorescent sensor for

anions in MeOH.

In the field of molecular recognition, the sensing of anions has

attracted growing attention because of its important role in

numerous biological processes.1 Both colorimetric and fluoro-

metric anion sensors have been reported. Where the strategy

involves the covalent linking of a reporter fragment (chromophore

or fluorophore) to the receptor, the approach is often limited by

the synthetic complexity of the receptor molecules. In contrast,

self-organized receptor–reporter systems represent a powerful and

simple way of analyte detection. The most successful example is

the displacement assay approach,2 pioneered by Ansyln, in which a

receptor–reporter ensemble is selectively dissociated by the

addition of an appropriate anion, accompanied by a detectable

response of the reporter. It occurred to us an alternative approach

could be envisioned where the anion-induced receptor–reporter

organization could be utilized for the assay of anions. Towards this

strategy our attention focused on phenylboronic acids (PBAs)

which not only serve as a Lewis acid metal center3 but also rapidly

and reversibly form cyclic esters with diols.4 Utilizing these

properties, Paugam and Smith have shown the F2 accelerated

saccharide transport by PBA at neutral pH. The tetrahedral

fluoroboronate anion afforded by the reaction of PBA and F2

enhances the formation of cyclic boronate esters with diols.5 Our

idea was to use this property to develop new sensor systems; if one

employs a diol-containing reporter, such as alizarin,6 then the

formation of the receptor (PBA)–reporter (alizarin) ensemble

would be enhanced by an appropriate anion (e.g., F2), resulting in

a change in the optical properties of the system.7

In this communication, we report the behaviour of PBAs and

alizarin in MeOH solution. As described below in detail, it was

found that F2- (or AcO2-) induced alizarin–PBA conjugation

produced a significant change in the fluorescence intensity of

alizarin. Although Shinkai et al. have previously reported a colour

change in a system involving the redox couple of ferrocene boronic

acid and dye molecules,8 the system represented here is the first

example where the fluorescent detection of anions using an anion-

induced receptor–reporter ensemble has been attained, making it

of potential use as a new sensing system.

Fig. 1 shows the titration results for monitoring the fluorescence

intensity change of alizarin (lex 5 420 nm) upon the addition of

PBA in the absence and presence of an excess amount of KF in

MeOH. Under F2-free conditions, alizarin shows only small

changes in fluorescence when excited at 420 nm (a slightly

enhanced emission was observed at low concentrations of PBA,

attributable to an increased acidity caused by adding the PBA to

methanol).9 This result suggests that alizarin hardly binds to PBA

in MeOH solution. In the presence of KF (40 equiv.) a significant

fluorescence enhancement was obtained by adding 3-nitrophenyl-

boronic acid (NPBA) (Fig. 1 ($)). This fluorescence response is

influenced by the acidity of PBA. Indeed, by using phenylboronic

acid (PBA) the sensitivity is somewhat diminished with a lower

saturation intensity in the fluorescence spectra.

F2-induced fluorescence changes were also elucidated from a

solution containing NPBA and alizarin: Fig. 2(a) shows the

fluorescence change when KF was added to alizarin (50 mM) and

NPBA (2 mM) in MeOH. Under F2-free conditions, the

fluorescence intensity was low, and consistent with that in Fig. 1.

However, the addition of KF produced an increase in the

fluorescence intensity of alizarin. The above results allow us to

consider that the anion-induced fluorescence enhancement process

would take place according to Scheme 1. The equilibria were

investigated in a CD3OD solution by 1H and 11B NMR

spectroscopy. Fig. 3 shows the 1H NMR spectra (400 MHz),

ranging from d 6.8 to 8.8 ppm, of alizarin (a), alizarin plus NPBA

(b) and alizarin plus NPBA upon adding F2 (c) in CD3OD at

room temperature. No perturbation of the chemical shifts for
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Fig. 1 Plots of the fluorescence intensity of alizarin with an incremental

amount of NPBA or PBA in the absence and presence of KF at 25 uC;

NPBA plus KF at 586 nm ($); NPBA at 586 nm (#); PBA plus KF at

600 nm (&); PBA at 600 nm (%). [Alizarin] 5 50 mM, [KF] 5 2 mM,

lex 5 420 nm.
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alizarin and NPBA is caused by mixing them under these

conditions (Fig. 3(b)), being consistent with the result in Fig. 1

where in MeOH almost no change in the fluorescence of alizarin

was observed upon adding only NPBA. When adding F2 into the

solution, however, the chemical shifts altered (Fig. 3(c)): in

particular, (1) for alizarin, a significant up-field shift of ArH3

(Dd 5 0.28 ppm) was obtained; (2) the resonances (Ha, Hc and

Hd) arising from NPBA when bound and not bound to alizarin

were clearly distinguishable signals in the presence of F2. The

assignment of chemical shifts for [nF–NPBA]2 (Ha9–Hd9) was

done based on the spectral data which were obtained when KF

(20 mM) was added to a MeOH solution of NPBA (20 mM). We

note that the chemical shifts for Ha0, Hc0 and Hd0 (ppm) appeared

at 8.41 (d, J 5 1.8 Hz), 7.41 (t, J 5 7.7 Hz) and 8.01–7.93 (a

multiplet signal containing Hb9 and Hb0), respectively, can be

assigned to [alizarin–NPBA–F]2,10 since the spectral behaviour as

well as the up-field shift of the ArH3 signal (vide supra) could be

fully explained on the basis of the formation of a boronate ester

between alizarin and [nF–NPBA]2.

Further assessment of the F2-induced NPBA–alizarin associa-

tion process came from a 11B NMR (96.3 MHz, 23 uC) study. The
11B NMR signal of NPBA (1 mM) in CD3OD shows one boron

signal at 28.2 ppm when boron trifluoride diethyl etherate was

used as an external reference. The signal shifted to d 5.6 ppm upon

addition of 5 equiv. of F2 as a (n-Bu)4N
+ salt, being attributable to

a change from sp2 to sp3 boron on F2-binding. The significant

shift of Dd 5 22.6 ppm is almost consistent with the finding of

Reetz et al.3 On the other hand, the addition of alizarin (1 mM)

into the CD3OD solution of NPBA caused no shift in the 11B

spectra. However, it is noteworthy that further addition of F2

(5 equiv.) into the solution involving alizarin and NPBA allowed

us to detect two boron signals at 12.3 ppm and 4.8 ppm. The latter

signal (d 4.8 ppm) could correspond to tetrahedral [nF–NPBA]2.

Thus, we reason that the signal of 12.3 ppm is assigned to the

ternary complex [alizarin–F–NPBA]2. These results indicate that

the production of sp3-hybridized phenylfluoroboronate plays an

important role in the alizarin–NPBA association which allows us

to detect F2.

As inferred from the results of Fig. 1 as well as the NMR study,

the K3 value for PBAs with the alizarin (Scheme 1) is quite small. It

means that the path via alizarin–PBA can be ruled out. Therefore

in this study, where MeOH is employed as a solvent, the path via

[nX–PBA]2 is plausible to produce [alizarin–X–PBA]2. Evidence

that F2 can complex with PBAs to form tetrahedral fluoro-

boronates was gained from fluorescence titrations of NPBA

(2 mM) with KF in MeOH (lex 5 268 nm, lem 5 333 nm). The

experimental curve could be fitted assuming the formation of a

trifluoroboronate (n 5 3) (see, supplementary information{).11

The association constant K1 was then estimated to be (9.4 ¡ 4.2)

6 109 M23,12 suggesting that PBAs can very effectively bind F2 in

MeOH. Finally, K2 is an association constant between alizarin and

[nX–PBA]2, the assessment coming from Fig. 2 (vide supra).

Under conditions containing excess amounts of NPBA, the

binding profile could be reproduced by a nonlinear curve fitting

plot based on a 1 : 1 complex formated between alizarin and F2,

indicating that monofluoroboronate [F–NPBA]2 (n 5 1) binds to

alizarin prior to the formation of a di(tri)fluoro tetrahedral

boronate; it is plausible that the observed fluorescence change

reflects the formation of an [alizarin–F–PBA]2 ensemble produced

by reaction of alizarin with [F–NPBA]2 where the K2 can be

estimated to be 4800 ¡ 150 M21. These results imply that,

although PBAs hardly interact with alizarin in MeOH, a

tetrahedral fluoroboronate produced by adding F2 could

Scheme 1

Fig. 3 1H NMR spectra (400 MHz, CD3OD, room temperature) of

alizarin (a), alizarin plus NPBA (b) and alizarin plus NPBA upon adding

(n-Bu)4NF (c). [Alizarin] 5 3.8 mM, [NPBA] 5 20 mM, [(n-Bu)4NF] 5

20 mM.

Fig. 2 Change in fluorescence spectra (lex 5 420 nm) (a) and UV/vis

spectra (b) for alizarin (50 mM) upon the addition of KF in the presence of

NPBA (2 mM) in MeOH at 25 uC. Inset: representative titration curve and

fitting based on a 1 : 1 binding model.
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strengthen the binding of the boronic acid to the diol moiety of

alizarin and enhance the fluorescence intensity.

Anion selectivity of the represented fluorescence system was

investigated using F2, Cl2, Br2, I2 and AcO213 because these

represent families of biologically important anions; Fig. 4 shows

the resulting titration curves for the fluorescence intensity when

these anions were added to a MeOH solution of alizarin in the

presence of 40 equiv. of NPBA. The presence of Cl2, Br2 and I2

induced no response of the fluorescence properties of alizarin,

whereas in the case of AcO2 the fluorescence intensity was

enhanced up to 750%.14 From these results, the apparent

association constants K2 (M21), defined in Scheme 1, were

calculated to be 4800 ¡ 150 for F2 (vide supra) and 17 000 ¡

700 for AcO2,12 respectively. The fact that the system shows 3.5-

fold higher affinity for AcO2 than for F2 is not surprising because

the high Lewis basicity of AcO2 enables it to strongly bind to the

boronic acid, resulting in a remarkable enhancement of the

fluorescence. The order of the sensitivity observed is clearly

correlated with the basicity of the added anions.

In conclusion, the results described here lead us to suggest a new

approach for the generation of an easy-to-prepare sensing

ensemble; anion-induced alizarin (reporter)–PBA (receptor) asso-

ciation results in a fluorescent sensor system showing a specific and

sensitive detection for anions containing the most electronegative

atoms such as fluorine (F2)15 and oxygen (AcO2).16 We believe

that the results described here are an important step in the

development of a simple-to-use detection tool for anions in a

variety of industrial or medical applications.17 We acknowledge a
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